Fonts

Fonts originally consisted of a set of moveable type letterpunches purchased from a type foundry. As early as 1600, the sizes of these types—their "bodies" - acquired traditional names in English, French, German, and Dutch, usually from their principal early uses.

These names were used relative to the others and their exact length would vary over time, from country to country, and from foundry to foundry. For example, "agate" and "ruby" used to be a single size "agate ruby" of about 5 points; metal type known as "agate" later ranged from 5 to 5.8 points. The sizes were gradually standardized as described above.

Modern Chinese typography uses the following names in general preference to stating the number of points. In ambiguous contexts, the word hào (t 號, s 号, lit. "number") is added to the end of the size name to clarify the meaning.

Note that the Chinese font sizes use American points; the Continental systems traditionally used the Fournier or Didot points. The Fournier points, being smaller than Didot's, were associated with the names of the Didot type closest in size rather than identical in number of points.

In March 1985, the Apple LaserWriter was the first printer to ship with PostScript, sparking the desktop publishing (DTP) revolution in the mid-1980s. The combination of technical merits and widespread availability made PostScript a language of choice for graphical output for printing applications. For a time an interpreter (sometimes referred to as a RIP for Raster Image Processor) for the PostScript language was a common component of laser printers, into the 1990s.

However, the cost of implementation was high; computers output raw PS code that would be interpreted by the printer into a raster image at the printer's natural resolution. This required high performance microprocessors and ample memory. The LaserWriter used a 12 MHz Motorola 68000, making it faster than any of the Macintosh computers to which it attached. When the laser printer engines themselves cost over a thousand dollars the added cost of PS was marginal. But as printer mechanisms fell in price, the cost of implementing PS became too great a fraction of overall printer cost; in addition, with desktop computers becoming more powerful, it no longer made sense to offload the rasterisation work onto the resource-constrained printer. By 2001, few lower-end printer models came with support for PostScript, largely due to growing competition from much cheaper non-PostScript ink jet printers, and new software-based methods to render PostScript images on the computer, making them suitable for any printer; PDF, a descendant of PostScript, provides one such method, and has largely replaced PostScript as de facto standard for electronic document distribution.

On high-end printers, PostScript processors remain common, and their use can dramatically reduce the CPU work involved in printing documents, transferring the work of rendering PostScript images from the computer to the printer.

Copyright © 2025 Points
Powered by Points